Genetic Algorithm versus Discrete Particle Swarm Optimization Algorithm for Energy-Efficient Moving Object Coverage Using Mobile Sensors
نویسندگان
چکیده
This paper addresses the challenge of moving objects in a mobile wireless sensor network, considering deployment limited number nodes within predetermined area to provide coverage for traveling on trajectory. Because insufficient and sensing range sensors, entire object’s trajectory cannot be covered by all deployed sensors. To address this problem complete coverage, sensors must move from one point another. The frequent movement quickly depletes sensors’ batteries. Therefore, solving object requires an optimized repertoire where (1) total distance is minimized (2) remaining energy also as balanced possible sensing. Herein, we used genetic algorithm (GA) discrete particle swarm optimization (DPSO) manage complexity problem, compute feasible quasi-optimal trajectories determine demand among nodes. Simulations revealed that GA produced significantly superior those DPSO terms traveled balance residual energy.
منابع مشابه
A Hybrid Particle Swarm Optimization and Genetic Algorithm for Truss Structures with Discrete Variables
A new hybrid algorithm of Particle Swarm Optimization and Genetic Algorithm (PSOGA) is presented to get the optimum design of truss structures with discrete design variables. The objective function chosen in this paper is the total weight of the truss structure, which depends on upper and lower bounds in the form of stress and displacement limits. The Particle Swarm Optimization basically model...
متن کاملObject Recognition Using Particle Swarm Optimization and Genetic Algorithm
Object recognition is an important research field of computer vision and has its application in a broad range of problems including image retrieval, compression, surveillance and medical diagnostics. The main goal of the object recognition problem is to recognize the objects of the same type even when they are viewed from different viewpoints. This goal, however, remains a challenge for compute...
متن کاملSELECTION OF SUITABLE RECORDS FOR NONLINEAR ANALYSIS USING GENETIC ALGORITHM (GA) AND PARTICLE SWARM OPTIMIZATION (PSO)
This paper presents a suitable and quick way to choose earthquake records in non-linear dynamic analysis using optimization methods. In addition, these earthquake records are scaled. Therefore, structural responses of three different soil-frame models were examined, the change in maximum displacement of roof was analyzed and the damage index of whole structures was measured. The soil classifica...
متن کاملUsing a combination of genetic algorithm and particle swarm optimization algorithm for GEMTIP modeling of spectral-induced polarization data
The generalized effective-medium theory of induced polarization (GEMTIP) is a newly developed relaxation model that incorporates the petro-physical and structural characteristics of polarizable rocks in the grain/porous scale to model their complex resistivity/conductivity spectra. The inversion of the GEMTIP relaxation model parameter from spectral-induced polarization data is a challenging is...
متن کاملProduction Planning Optimization Using Genetic Algorithm and Particle Swarm Optimization (Case Study: Soofi Tea Factory)
Production planning includes complex topics of production and operation management that according to expansion of decision-making methods, have been considerably developed. Nowadays, Managers use innovative approaches to solving problems of production planning. Given that the production plan is a type of prediction, models should be such that the slightest deviation from their reality. In this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied sciences
سال: 2022
ISSN: ['2076-3417']
DOI: https://doi.org/10.3390/app12073340